顶部logo

资讯中心

众巍为您提供行业第一资讯!
高纯氘气生产方法简述
发布日期:2021-05-18 来源:

氘的概述

 

氘又称重氢,符号D或2H,氢的一种同位素。氢气中含氘0.02%。自然界的水中,重氢的含量约为150ppm(百万分之150)。氘符 号12H或D。分子量4.032。无色无臭的气体。熔点 -254.6℃ (16.132kPa),沸点-249.7℃。微溶于水和其他液体。自然界里存在的水一般由2个氢原子和1个氧原子组成,但氢原子有质量不同的3个同位素,原子量分别为1,2,3的氕(H,氢)、氘(D ,重氢)、氚(T,超重氢)。氘的大部分理化性质类似氢,在大多数情况下,氘的反应性较氕稍小。氘主要以重水、氘气的形式被使用。

1931年底,美国科学家哈罗德·克莱顿·尤里(Harold Clayton Urey)在蒸发了大量液体氢之后,利用光谱检测的方法发现了重氢(氘,D)。尤里因此在1934年获得诺贝尔化学奖。

如果人体内氘含量过多,就无法生产足够的能量,随之而来就是疲劳、癌症还有各种慢性病。很多人有这样的病症,就是因为体内环境的氘过多,而这又有很多原因,比如转基因食物、工业化食品,还有居住于临海地区等等。

工业化食品里面的氘水平是比较高的,这类食品食用过多,就会是人体氘含量增加。因为人体细胞本身就是一个去氘机,在正常的代谢过程中会去氘,如果体内氘水平太高,难以调整到一个正常的水平130ppm),氘比较重就会搅乱蛋白质和DNA,从而引发癌症。这其实不是因为致癌基因,20%的患癌症病人基因是没有突变的,是氘让DNA变大,使细胞不断分裂。

 

氘气制备技术

 

1、液氢精馏技术

氘是氢的同位素,天然氢中氘含量是0.013到0.015。氘沸点为23.5K,氢的沸点为20.38K,HD沸点为22.13K。所以理论上采用精馏液氢制备氘气是完全可以实现的。通常情况下低温精馏时,首先浓缩的是HD,但HD必须经催化剂转化为D2、HD、H2平衡混合物后才能继续精馏浓缩,才能进一步制备。当前液氢精馏技术中低温精馏分离技术多采用JET低温精馏系统来实现氘气制备。但精馏技术回流需要消耗大量能量,能耗问题突出,所以经济性并不理想,在能耗方面有待改进。

2、重水电解技术

重水电解技术采用电解水装置,以碱金属的氘氧化物为电解质或固体聚合物电解重水。虽然通过该技术制备氘气纯度较高,但仍需要对已制备的氘气进一步纯化。纯化重点是去除杂质,降低氘气所含的氢同位素杂质氕,但氕去除难度较大,处理工艺十分复杂。并且电解过程中能耗问题也十分突出,应用中降低工作电压,提高能量效率的主要策略有:减小电极间距离、提高工作压力、提高工作温度、改变电极材料、使用添加剂等。

3、气相色谱法

气相色谱法发明于一九五二年,其应用领域十分广泛。一九五七年,气相色谱法被成功用于于氘气制备。目前氢同位素主流气相色谱分离技术有H2-顶替色谱法、迎头色谱法、冲洗色谱法、自我顶替色谱法。H2-顶替色谱法制备量大,回收率和浓缩率最高,但工艺相对复杂。迎头色谱法工艺相对简单,适合从天然氢中制备氘气。冲洗色谱法制备氘气纯度较低,不能满足需求,因此较少采用。自我顶替色谱法具有着无载气、浓缩率高、回收率适中等优点[4],是最为理想的色谱制氘技术。

D2-2.png